BIOCHEMICAL, HISTOPATHOLOGICAL AND IMMUNOHISTOCHEMICAL
CHANGES IN PARACETAMOL, FISH OIL AND THIOACETAMIDE TREATED
RAT

Fatma A. Gad1, Osama A. Abd Allah2, Ayman S. Farid1, Khalid M. Fararh1
1Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University. 2Department of
Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University.

ABSTRACT

The aim of the study is the investigation and comparison the changes in biochemical, histopathological and
immunohistochemical pictures in experimentally induced different liver affections including inflammation,
fatty change and cirrhosis. Six groups of rats were used; 3 groups experimentally induced hepatic stress by
administration of Paracetamol (P) as single dose (1 g /kg b. wt., for 1 day) Fish oil (FO) (35% of total
calories) and Thioacetamide (TAA) (200 mg/5 ml saline/Kg. b. wt.,) for 8 weeks and in addition to their
controls (3 groups). Serum levels of ALT, AST and total bilirubin were significantly increased in the 3
groups. Furthermore, TAA-treated group showed significant increase in ALP and GGT as well as significant
decrease in total proteins and albumin. In addition, there were disturbance in lipid profile and glucose in the
three experimental groups. The results of this study demonstrated that P, FO and TAA have hepatotoxic
effects, which confirmed by histopathological examinations. Hepatocytes showed hydropic degeneration in
diffuse manner. Also, Fatty change was observed in diffuse manner all over the hepatocytes in liver of F
group. Liver in group T showed distortion of portal areas by fibrous tissue proliferation infiltrated with
inflammatory cells.

Keywords: Liver functions, Paracetamol, Fish oil, Thioacetamide, hepatotoxicity

1. INTRODUCTION

Liver is one of the most vital and target
organ in the body it plays a major role in
carbohydrate, protein and lipid
metabolism. The liver is vulnerable to many
diseases because of its strategic role and
multidimensional functions. The most
common worldwide liver diseases are
hepatitis, fatty liver and cirrhosis [1].
Paracetamol (one of the antipyretic drugs)
and Thioacetamide one of the colagogues are
appeared to be hepatotoxic agents [2], and
the liver response to such agents results in
variety of lesions as inflammation (hepatitis)
and fibrosis (cirrhosis) respectively [3]. The
aim of this study is to investigate and
compare the changes in biochemical,
histopathological and immunohistochemical
pictures in experimental liver affections
including inflammation, fatty change and
cirrhosis.

2. MATERIALS AND METHODS

2.1. Animals and experimental design:

30 apparently healthy adult male white
Albino rats (180–190 g.) were obtained from
United Company for Chemical and Medical
Preparation, Cairo, Egypt and housed for two
weeks away from any stressful stimuli, and
supplied with diet and water ad libitum. Rats
were allocated randomly into six main
groups each group consists of 5 rats: control
group for paracetamol (CP); received distilled water intragastric for only one day as a single dose. Paracetamol- treated group (P); received paracetamol intragastric at a dose of 1 gm/kg b. wt. as a single dose for one day for induction of hepatitis [4]. Control group for fish oil (CF); received distilled water intragastric for 8 weeks. Fish oil- treated group (F); received fish oil intragastric at a level of 35% of total calories (1.5 ml per rat) daily for 8 weeks for induction of fatty liver [5]. Control group for thioacetamide (CT); consists of 5 male rats and received physiological saline by intraperitoneal injection for 8 weeks. Thioacetamide-treated group (T); received thioacetamide (TAA), 200 mg/5 ml saline/Kg. i.p (3 times / week) for 8 weeks for induction of cirrhosis [6].

2.2. Chemicals
Paracetamol provided as Abimol syrup containing 150 mg paracetamol/5ml from Advanced Biochemical Industries, El Salam City, Cairo. Fish oil obtained in a liquid form from Egypt Pharmaceutical Company. Thioacetamide was obtained as a powder form Lobachemi PVT Mumbai India.

2.3. Reagents and kits
Biochemical kits for determination of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total protein, albumin, triglycerides, cholesterol, high density lipoprotein cholesterol (HDL-C), Serum glucose, gamma glutamyle transferase (GGT) and bilirubin were obtained from Stan Bio Laborataries. Caspase-3 antibody was obtained from Santa Cruz Biotechnology Inc, CA, USA for immunohistochemical study.

2.4. Sampling:
Blood samples were obtained from retro-orbital veinus plexus of the animals (after 1 week in paracetamol group and 8 weeks in fish oil and thioacetamide) for sera samples. These sera were used freshly for biochemical determination of serum transaminases (ALT and AST) activities, ALP, GGT, bilirubin, total protein, albumin, glucose, cholesterol, triglycerides and HDL-C. Small tissue specimens were taken from the liver of rats in different groups and fixed in formalin after proper fixation, the specimen dehydrated in alcohol, cleared in xylene and embeded in paraffin then sections of 5 micron thickness stained by H &E and Crossman stains for histopathological and immunohistochemical studies.

2.5. Chemical analysis of serum:
All the serum biochemical parameters determined spectrophotometrically, ALT, AST, ALP GGT and bilirubin were performed according to [7,8,9, 10, 11] respectively. Total protein, albumin and HDL-C were determined by colorimetric method [12, 13, 14] respectively. Cholesterol, triglyceride and glucose were determined by enzymatic colorimetric method [15, 16, 17], respectively.

2.6. Histopathological examination:
it was performed according to the method adapted previously [18]. Immunohistochemical examination was performed according to the previous method [19].

2.7. Statistical Analysis
Statistical analysis was performed using the statistical software package SPSS for Windows (Version 18.0; SPSS Inc., Chicago, IL). Student’s t-test was used to determine significant differences between two experimental groups. The significance of differences between more than two groups was evaluated by one-way analysis of variance (ANOVA). If one-way ANOVA indicated a significant difference, then differences between individual groups were estimated using post hoc Fisher’s least
Clinicopathological study on some hepatotoxins

significant difference (LSD) test. Results are expressed as the mean ± standard error of mean. A P-value of less than 0.05 was considered significant.

3. RESULTS

Data demonstrating the effects of paracetamol, fish oil and thioacetamide on serum biochemical parameters were presented in table (1). There was a significant increase in serum ALT and AST in P, F and T groups when compared on comparison with the values of the control groups. Non-significant changes were observed in ALP and GGT in P and F groups compared with control groups. Meanwhile, there was a significant increase in ALP and GGT in T group compared with control group. The serum total bilirubin, direct and indirect bilirubin showed significant increases in P, F and in T groups. Concerning to the results of total proteins, there were non-significant changes in total proteins in P and F groups compared with control groups. Meanwhile, there was a significant decrease in total proteins in T group compared with control. Table (2) represents the changes in, triglyceride, total cholesterol, HDL-C, LDL-C, albumin and glucose in paracetamol-treated group after 1 week as well as fish oil and thioacetamide-treated groups after 8 weeks. There was a significant decrease in albumin in group T compared with control. Meanwhile non-significant changes were reported in albumin in P and F groups compared with control groups. Regarding to the results of glucose, there were non-significant changes in P group compared with control groups. Meanwhile, there was a significant increase in glucose in F and T groups compared with control. There was a significant increase in triglyceride in P, F and T groups compared with control groups. Total cholesterol showed non-significant changes in P group compared with control groups. Meanwhile, there was a significant decrease in total cholesterol in F group compared with control group, but total cholesterol revealed significant increase in T group compared with control. In comparison to the control groups, there was a significant decrease in HDL cholesterol in P and F groups. Conversely, there was a significant increase in HDL cholesterol in T group compared with control group. Concerning to the results of LDL-C cholesterol, there were non-significant changes in P group compared with control group. Meanwhile, there was a significant decrease in LDL-C cholesterol in F group compared with control but, LDL-C cholesterol showed significant increase in T group compared with control group. In histopathological examination P group, hepatocytes showed hydropic degeneration in diffuse manner after 7 days (fig. 1). Also, Fatty change was observed in diffuse manner all over the hepatocytes after 8 weeks in liver of F group (fig. 2), liver showed distortion of portal areas by fibrous tissue proliferation infiltrated with inflammatory cells and extended in between hepatic parenchyma and forming pseudo lobules, also marked congestion of portal vein and perivascular edema admixed with inflammatory cells with fibrous tissue proliferation in portal area particularly around bile ducts (fig. 3). Also, liver of this group showed positive green coloration of fibrous tissue proliferation in portal areas with marked lobulation of hepatic parenchyma as recorded by Crossman stain (fig. 4). Meanwhile, the results of immunohistochemical examination liver of P group showed severe expression for Caspase-3 in endothelial of the central vein and blood sinusoids with occasional marked expression in some hepatocytes (fig. 5). In addition, liver of rat in F group showed severe expression for Caspase-3 in the endothelium of central vein and blood sinusoids and in small numbers of hepatocytes (fig. 6). On the other hand, liver of rat in T group showed severe cytoplasmic
Table (1) Serum biochemical parameters in different treated groups compared to their control (mean ± SE) (after 1 week in paracetamol, 8 weeks in fish oil and thioacetamide groups).

<table>
<thead>
<tr>
<th>Parameters & Groups</th>
<th>ALT (U/I)</th>
<th>AST (U/I)</th>
<th>ALP (U/I)</th>
<th>GGT (U/I)</th>
<th>Total protein (g/dl)</th>
<th>Total bilirubin (mg/dl)</th>
<th>Indirect bilirubin (mg/dl)</th>
<th>Direct bilirubin (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cp</td>
<td>27.01±0.28</td>
<td>49.36±0.35</td>
<td>85.91±0.12</td>
<td>2.79±0.03</td>
<td>6.19±0.21</td>
<td>0.41±0.02</td>
<td>0.15±0.02</td>
<td>0.25±0.00</td>
</tr>
<tr>
<td>P</td>
<td>40.04±0.35</td>
<td>70.96±0.35</td>
<td>86.21±0.26</td>
<td>2.75±0.03</td>
<td>5.90±0.11</td>
<td>1.09±0.14</td>
<td>0.37±0.02</td>
<td>0.70±0.12</td>
</tr>
<tr>
<td>CF</td>
<td>28.76±0.22</td>
<td>49.10±0.27</td>
<td>86.03±0.02</td>
<td>2.19±0.02</td>
<td>6.39±0.16</td>
<td>0.49±0.00</td>
<td>0.19±0.00</td>
<td>0.29±0.00</td>
</tr>
<tr>
<td>F</td>
<td>38.88±0.24</td>
<td>60.78±0.46</td>
<td>85.77±0.35</td>
<td>2.21±0.03</td>
<td>6.43±0.07</td>
<td>0.85±0.08</td>
<td>0.30±0.01</td>
<td>0.55±0.08</td>
</tr>
<tr>
<td>CT</td>
<td>28.15±0.09</td>
<td>48.24±0.14</td>
<td>86.03±0.29</td>
<td>2.17±0.02</td>
<td>6.35±0.06</td>
<td>0.44±0.01</td>
<td>0.18±0.00</td>
<td>0.26±0.01</td>
</tr>
<tr>
<td>T</td>
<td>37.00±1.07</td>
<td>58.73±1.07</td>
<td>135.93±1.67</td>
<td>12.56±0.26</td>
<td>4.66±0.06</td>
<td>1.58±0.14</td>
<td>0.32±0.03</td>
<td>1.25±0.10</td>
</tr>
</tbody>
</table>

Data represent mean values ± SEM (n = 5).
* (p≤0.05) with the corresponding control groups.

Expression for Caspase-3 in the hepatocytes and severe expression in the endothelium of central vein and blood sinusoids (fig. 7).

4. DISCUSSION

The non-steroidal analgesic-antipyretic drug, paracetamol, is one of the safest drugs when used in recommended doses, but it is capable if administrated for long periods of producing massive hepatic necrosis on acute overdose or chronic low dose [20]. Concerning serum biochemical constituents in relation to liver functions of paracetamol-treated groups, there were significant increases in ALT and AST levels. These results agreed with the previous data [21]. These changes attributed to the formation of high amount of N-acetyl-p-benzoquineimine. This acetaminophen (APAP) metabolite is a major cause of hepatocellular damage and centrilobular hepatic necrosis [22] and these results supported by histopathological examination of liver, which showed diffuse Kupffer cells proliferation between hepatocytes, congestion of sinusoids and ballooning of hepatocytes as described previously [23]. Declaring to bilirubin level, there was a significant increase in total bilirubin. These increase mostly due to the newly developed hepatotoxic effects of paracetamol. A significant increase in the level of triglyceride agreed with the data of [24]. These findings might be due to excessive release of triglycerides [25] and / or decreased hepatic release of lipoprotein and increased esterification of free fatty acids [24]. Also, the significant decrease in HDL-C after 7 days of treatment, which agreed previous result [26]. The disturbance in HDL-C attributed to overproduction of H2O2 generated during the cytochrome P450-mediated microsomal metabolism of...
Table (2) Serum biochemical parameters in different treated groups compared to their control (mean ± SE) (after 1 week in paracetamol, 8 weeks in fish oil and thioacetamide groups).

<table>
<thead>
<tr>
<th>Parameters & Groups</th>
<th>Glucose (mg/dl)</th>
<th>Albumin (g/dl)</th>
<th>LDL (mg/dl)</th>
<th>HDL (mg/dl)</th>
<th>Cholesterol (mg/dl)</th>
<th>Triglycerides (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cp</td>
<td>70.77 ± 1.87</td>
<td>3.46 ± 0.11</td>
<td>22.13 ± 1.22</td>
<td>31.19 ± 0.96</td>
<td>69.10 ± 2.03</td>
<td>78.61 ± 1.32</td>
</tr>
<tr>
<td>P</td>
<td>71.05 ± 0.98</td>
<td>3.40 ± 0.11</td>
<td>30.63 ± 4.96</td>
<td>26.42 ± 1.00</td>
<td>77.24 ± 5.38</td>
<td>100.94 ± 0.38</td>
</tr>
<tr>
<td>CF</td>
<td>69.27 ± 0.38</td>
<td>3.35 ± 0.10</td>
<td>14.16 ± 1.02</td>
<td>24.91 ± 0.61</td>
<td>55.06 ± 1.27</td>
<td>79.93 ± 0.38</td>
</tr>
<tr>
<td>F</td>
<td>78.54 ± 0.60</td>
<td>3.40 ± 0.05</td>
<td>14.16 ± 1.17</td>
<td>15.35 ± 0.84</td>
<td>42.30 ± 2.36</td>
<td>100.04 ± 0.05</td>
</tr>
<tr>
<td>CT</td>
<td>71.16 ± 1.33</td>
<td>3.44 ± 0.05</td>
<td>16.04 ± 0.76</td>
<td>23.53 ± 0.30</td>
<td>55.95 ± 0.96</td>
<td>81.86 ± 0.19</td>
</tr>
<tr>
<td>T</td>
<td>84.35 ± 0.47</td>
<td>2.28 ± 0.12</td>
<td>41.93 ± 1.69</td>
<td>26.20 ± 0.14</td>
<td>92.63 ± 1.77</td>
<td>122.49 ± 0.71</td>
</tr>
</tbody>
</table>

On the other hand, there were non-significant changes in cholesterol, glucose, and total protein. These results agreed with previous data [25]. Concerning to the immunohistochemical examination, it used for detection of caspase-3, which is important signaling molecule present in cytoplasm and has a role in the initiation and progression of apoptosis, inactive form of caspase-3 changed to active form for the detection of apoptotic events [28]. The present study indicated that liver of paracetamol-treated group showed severe expression of caspase-3 in endothelial of the central vein and blood sinusoids and low expression in the hepatocytes, which indicates that high dose of paracetamol cause low apoptosis to hepatocyte.

Fish oil is an oil derived from the tissues of oily fish. Fish oils contain the omega-3 fatty acid seicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), precursors of certain eicosanoids that are known to reduce inflammation throughout the body [29]. In fish oil treated rats, ALT and AST showed significant increase. These results are in agreement with previous data [30]. These increases may be due to accumulation of lipid in hepatocytes lead to hepatocellular swelling and membrane damage, which lead to increase permeability and release of these enzymes to the blood [31]. These results supported by histopathological changes as the liver showed degenerative changes especially fatty changes, which increase and become diffuse by increased the duration of experiment and characterized by large vacuoles giving the cell signet ring shape pushed the nucleus to the periphery of the cells as reported previously [32]. In addition, there was a significant increase in glucose level, which may be due to decreased serum insulin level because of fish oil feeding [33]. Moreover, there was an increase in bilirubin level, which indicates hepatocellular damage because of lipid.

paracetamol [27]. On the other hand, there were non-significant changes in cholesterol, glucose, and total protein. These results agreed with previous data [25]. Concerning to the immunohistochemical examination, it used for detection of caspase-3, which is important signaling molecule present in cytoplasm and has a role in the initiation and progression of apoptosis, inactive form of caspase-3 changed to active form for the detection of apoptotic events [28]. The present study indicated that liver of paracetamol-treated group showed severe expression of caspase-3 in endothelial of the central vein and blood sinusoids and low expression in the hepatocytes, which indicates that high dose of paracetamol cause low apoptosis to hepatocyte.

Fish oil is an oil derived from the tissues of oily fish. Fish oils contain the omega-3 fatty acid seicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), precursors of certain eicosanoids that are known to reduce inflammation throughout the body [29]. In fish oil treated rats, ALT and AST showed significant increase. These results are in agreement with previous data [30]. These increases may be due to accumulation of lipid in hepatocytes lead to hepatocellular swelling and membrane damage, which lead to increase permeability and release of these enzymes to the blood [31]. These results supported by histopathological changes as the liver showed degenerative changes especially fatty changes, which increase and become diffuse by increased the duration of experiment and characterized by large vacuoles giving the cell signet ring shape pushed the nucleus to the periphery of the cells as reported previously [32]. In addition, there was a significant increase in glucose level, which may be due to decreased serum insulin level because of fish oil feeding [33]. Moreover, there was an increase in bilirubin level, which indicates hepatocellular damage because of lipid.
Fig (1): Liver of rats received paracetamol 1gm/kg B. wt., 7 days post treatment, showing hydropic degeneration of the hepatocytes in diffuse manner X600. Fig (2): Liver of rats received fish oil 35% of total calories; 8 weeks post treatment, showing fatty change (f) in diffuse manner all over the hepatocytes X600. Fig (3): Liver of rats received thioacetamide200mg/5ml saline/kg B. wt.; 8 weeks post treatment, showing marked congestion of portal vein and perivascular edema odmixed with inflammatory cells (m) with fibrous tissue proliferation (f) in portal area particularly around bile ducts X400. Fig (4): Liver of rats received thioacetamide200mg/5ml saline/kg B. wt. showing positive reaction of fibrous tissue proliferation in portal
Clinicopathological study on some hepatotoxins

area as recorded by Crossman stain X400. Fig (5): Liver of rat received paracetamol 1gm/kg. B. wt., 1 week post treatment, showing sever expression for Caspase-3 in endothelial of the central vein and blood sinusoids with occasional marked expression in some hepatocytes X400. Fig (6): Liver of rat received fish oil 35% of total calories; 8 weeks post treatment, showing severe expression for Caspase-3 in the endothelial of central vein and blood sinusoids and in small number of hepatocytes X400. Fig (7): Liver of rat received thioacetamide200mg/5ml saline/kg B. wt., 8 weeks post treatment, showing severe cytoplasmic expression for Caspase-3 in the hepatocytes and very sever expression in the endothelium of central vein and blood sinusoids X400.

accumulation in hepatocytes [31]. Regarding to the effect of FO feeding on lipid profile, there was a significant increase in triglyceride. Our results agree with the result reported previously [34] who found elevated triglyceride level in sunflower oil treated rats, which may be due to increased synthesis and secretion of lipoproteins because of hepatic hyperlipogenese. Conversely, there was a significant decrease in cholesterol, LDL-C and HDL-C levels. These results were agreed with data recorded previously[33].This hypocholesteremic effect may be due to fish oil diet enhances the binding affinity of LDL-C to liver plasma membranes or apolipoprotein B which is the principle protein of LDL-C, comprising nearly 90% of total protein mass, and fish oil was shown to reduce apolipoprotein B. Therefore, FO reduce LDL-C [35].

With respect to the immunohistochemical examination, the present study indicated that liver of fish oil group showed severe expression of caspase-3 in the endothelial of central vein and blood sinusoids and in low number of hepatocytes, which indicates death of some hepatocytes. TAA is a potent selective hepatotoxin due to oxidative injury, which has been recognized as the major mechanism in TAA-induced liver damage [36]. There were significant elevations in ALT, AST, ALP, GGT, total bilirubin and glucose levels. Increase levels of ALT and AST may be due to AST present in both mitochondria and cytosol of liver cells, while ALT is found in cytosol only so that when liver cells damage release these enzymes into the extracellular fluid and results in increased plasma levels of transaminases activity [37]. increased ALP and GGT levels might be due cholestasis as cholestasis implies impairment of bile flow, which can be caused by obstruction of biliary tract [38]. These results confirmed by histopathological examination where liver showed distortion of portal areas by fibrous tissue proliferation infiltrated with inflammatory cells, extended in between hepatic parenchyma, and forming pseudolobules. In addition, marked congestion of portal vein and perivascular edema admixed with inflammatory cells and fibrous tissue proliferation in portal area particularly around bile ducts. Increased total bilirubin may be due to failure of normal uptake, conjugation and or excretion by the damaged hepatic parenchyma [31], while hyperglycemia may due to effect of TAA on liver glycogen producing glycogenolysis and this was accompanied by a marked increase in serum glucose [39].

On the other hand, there was significant decrease in total proteins and albumin, which agreed with previous results [40]. It is well known that following cellular damage the capacity to synthesize proteins is reduced, and as the extent of damage increases, the levels of these proteins in the plasma will tend to decrease (total protein and albumin levels) [40]. There were significant increases in triglyceride, cholesterol, HDL-C and LDL-C. This indicates disturbances in lipid metabolism induced by TAA intoxication as reported and agreed the results recorded previously [41].

The result of immunohistochemical examination showed severe cytoplasmic
expression for caspase-3 in the hepatocytes and in the endothelium of central vein and blood sinusoids when compared with control group, which confirm the hepatotoxic effect of thioacetamide due to increased hepatic apoptosis.

Conclusion

From the present study, it concluded that paracetamol, fish oil and thioacetamide have toxic effect on liver and cause disturbance in its function, which resulted in increase in ALT, AST and total bilirubin. Furthermore, increased ALP and GGT in TAA treated-rats with alteration of serum lipid, glucose and total protein levels were recorded.

5. REFERENCES

Clinicopathological study on some hepatotoxins

التغيرات البيوكيميائية والهستوبيولوجية والهستوكيماوية المناعية في الفئران المعالجة بكل من البراسيتمول وزيت السمك والثيواستيميد.

فاطمة عبد المنعم جاد، أسامة علي محمد عبد الله، أيمن سمير فريدة، خالد محمد مصطفى فرمان

قسم الباثولوجيا الإكلينيكية - كلية الطب البيطري - جامعة بنها، قسم الباثولوجيا الإكلينيكية - كلية الطب البيطري - جامعة قناة السويس

المتخصص العربي

أجريت هذه الدراسة لمعرفة ومقارنة التغيرات البيوكيميائية والهستوبيولوجية والهستوكيماوية المناعية لإصابات الكبد المختلفة والتي تشمل التهاب الكبد والتشمع الكليبي وتليف الكبد. وقد تم استخدام 6 مجموعات من الفئران 3 مجموعات تم علاجها بكل من البراسيتمول كجرعة واحدة وزيت السمك والثيواستيميد لمدة 8 أسابيع وأيضا 3 مجموعات أخرى استخدمت كمجموعات ضابطة لتلك المجموعات. وقد وجد زيادة في نشاط إنزيم الأمينو ترانس فريز وإنزيم الأسبرتيت أمينو ترانس فريز وإنزيم الألفا غلوكوزينات، وجدت زيادة في إنزيم القلقازينات إنزيم جاما جلوتامين ترانس فريز وعلى العكس نقص في البروتينات الكلية والبروتين في مجموعة الثيواستيميد. وقد وجد أيضًا اضطرابات في مستوى الدهون والجلوكوز في الثلاث مجموعات المعالجة. لذلك فقد تبين من نتائج هذه الدراسة أن كل من البراسيتمول وزيت السمك والثيواستيميد لهم تأثير سام ومدمر على الكبد.