Comparative evaluation of antibody response in sheep vaccinated by bivalent clostridial and pasteurella combined vaccine

Tarek N. Hanna¹, Abdelfattah M. Selim², Mohamed H. Ebeid³, Faysal K. Houmda², Alaa A. Elmeneisy¹, Susan F. Gorgy¹

¹Veterinary Serum and Vaccine Research Institute, Abbassia, Cairo. ²Department of animal medicine and infectious diseases, Faculty of Veterinary Medicine, Benha University.

A B S T R A C T

The protective effect of both bivalent Clostridial vaccine and Pasteurella combined vaccine was investigated in sheep by using ELISA test. The antibody titers against C. Chauvoei and C. septicum in sera of sheep either vaccinated with bivalent Clostridial or Pasteurella combined vaccines reach to its peak at day 90 post vaccination. There was no significant difference in C. chauvoei and C. septicum antibody titers between bivalent Clostridial and Pasteurella combined vaccines during entire period of study. In addition, the antibody titers against P. multocida type A and D and M. haemolytica type A in sera of sheep vaccinated with both vaccines were high at period between day 30 -180 post vaccinations. The result revealed that there is no significant difference in antibody titers in both vaccines.

Keywords: C. chauvoei, C. septicum, P. multocida, M. haemolytica, ELISA

1. INTRODUCTION

Clostridial and Pasteurella diseases are two major diseases affecting sheep having an adverse effect on their management. The control of these diseases is conducted by vaccination with specific monovalent vaccines, consuming considerable time, labor and operations cost. Many authors recommended the use of a combined vaccine against some infectious diseases that revealed good immunity as well as single vaccine (Olivia Cooper 2011). Simultaneous immunization of farm animals against anaerobic and aerobic infection gave good immunity (Burdov 1962; Darie et al. 1979). In addition, simultaneous administration of haemorrhagic septicaemia and FMD vaccines resulted in no adverse effect (Joseph and Hedger 1984).

In Egypt some authors studied the effect of combined vaccine in cattle which induced a high level of antibodies in sera of cattle vaccinated either with monovalent or bivalent vaccine of blackleg and FMD as studied by Abdel-Hamid et al. (1991). Another work studied the ability to prepared combined vaccine from C. perfringens B and C in combination with P. multocida type A, B and D to assist the sheep farmer to control the most major bacterial diseases of sheep (Hussein et al. 2000).

The present work was planned to study the immune response of sheep vaccinated with Clostridial and Pasteurella combined vaccine and compared them with that produced with correspond bivalent.

2. MATERIALS AND METHODS
Comparative evaluation of antibody response in sheep

2.1. Preparation of Vaccines:

a) Preparation of C. chauvoei whole cell culture vaccine:

Guinea pigs were injected with 0.5 ml C. chauvoei cultured strain suspended in 0.5 ml CaCl solution. The heart blood of guinea pig collected after death and cultures on cooked meat media at 37°C for 18 h. The cultured media inoculated into peptone thioglycolate media supplied with 2% glucose solution and incubated at 37°C for 18 h. The culture media of C. chauvoei inactivated using 0.5% formalin and incubated at 37°C for 7 days with agitation for complete inactivation of cultured media as described by Gadalla et al. (1974). Thiomerosal 0.01% was added as preservative. The obtained C. chauvoei culture had opacity 6.0 units/ml.

b) Preparation of C. Septicum toxid vaccine:

Toxid vaccine of C. septicum was prepared with the same method of C. Chauvoei as described by Gadalla et al. (1974). Detoxification of C. septicum vaccine was done by addition of 0.5% formalin and the culture incubated at 37oC for 5 days. The whole culture was subjected to ultrafiltration by using 0.22 µl Millipore filter to obtain C. septicum toxoid only without the bacterial cells. The required dose for C. septicum toxoid vaccine should be contained 10L+/dose according to Merk (1998).

c) Preparation of bivalent Clostridial vaccine

Bivalent vaccine was prepared by addition of 4 volume C. chauvoei to one volume C. septicum as described by Merk (1998). Aluminum hydroxide gel 25% was added as adjuvant and the prepared vaccine kept at 4°C.

2.1.2. P. multocida type A and D and M. haemolytica type A vaccine.

Fresh strains from P. multocida type A and D and M. haemolytica type A were inoculated into Bain and Jones media and incubated at 37°C for 24 hrs. Then, formalin 37% was added to inactivate the culture as described by Confer et al. (1993). The concentration was adjusted to 5x10^10 CFU/ml using MacFarland standard tube method. The culture was mixed thoroughly with aluminum hydroxide gel 25% according to Blackall and Reid (1987) using magnetic stirrer at 300 rpm.

2.1.3. Preparation of combined vaccine.

Equal volume from bivalent Clostridial vaccine and Pasteurella vaccine were mixed together according to Ghanem (1987).

All vaccines subjected to sterility and safety before using them in immunization according to British Veterinary Pharmacopoeia (2010).

2.2. Preparation of antigens

2.2.1. Preparation of C. chauvoei antigen for use in ELISA

C. chauvoei strain was cultured on agglutinating broth medium at 37°C for 18-24 hrs. The culture was centrifuged at 4000 rpm at 4°C for 10 min. The cells were collected and washed twice with phosphate buffer saline (PBS) as described by (Mattar et al. 2002). The cells were sonicated using cell sonicator for 4 min. The supernatant was collected by centrifugation at 4000 rpm for 10 min. The protein concentration was adjusted to 20µg/ml in carbonate bicarbonate buffer pH 9.6.

2.2.2. Preparation of C. septicum antigen for use in ELISA

Alpha toxin was purified from culture supernatant of C. septicum strain as described by Hong et al. (2002); the toxin was precipitated from supernatant of 18 hrs brain heart infusion broth by 60% saturated
ammonium sulphate, dissolved in 10 mM sodium sulphate pH7. The protein concentration was adjusted to 10µg/ml in carbonate bicarbonate buffer.

2.2.3. Preparation and titration of P. multocida type A and D M. haemolytica antigen type A used for ELISA

The different strain were grown on brain heart infusion agar for 18 hrs and suspended in carbonate bicarbonate buffer pH 9 according to Voller et al. (1976). The suspension was sonicated for 15 min at 35% power using a cell disrupter with microtip probe.

2.3. Vaccination Schedule

In a clean Twenty five sheep aged of 4-6 months were divided into four groups; First group composed of 7 sheep which vaccinated with bivalent Clostridial vaccine S/C in two doses (the 1st dose is 3 ml, the 2nd dose is 2 ml) with 21 days interval. The second composed of 7 sheep which vaccinated S/C with Pasteurella vaccine in two doses (1st dose is 1ml, and 2nd dose is 2ml) with 21 days interval. The third group composed of 7 sheep vaccinated S/C with combined vaccine in two doses (1st dose is 4 ml and 2nd dose is 4ml) with 21 days interval. In addition to, control group which composed of 4 sheep kept as non-vaccinated control.

2.4. Blood Sampling

Blood samples were collected from all animals before vaccination and immediately after the injection of 2nd dose of different vaccines at day 14, 30, 60, 90, 120, 150, 180, 210 and 240.

2.5. Evaluation of different prepared vaccines

Enzyme linked immunosorbent assay (ELISA). It was carried out according to (Voller et al. 1976; Walls 1977; Wood 1991; Matter et al. 2002) for measuring antibodies against C. chauvoei, C. septicum, P. multocida and M. haemolytica type A. The results were calculated according to formula described by (Grabowska et al. 2002).

2.6. Statistical Analysis

The result of ELISA in all experiments was analysis with t-test according to (Freund 2001).

3. RESULTS

3.1. Evaluation of the prepared vaccines

a) Safety test

All the inoculated guinea pigs and mice with different prepared vaccine were survived all over the observation period (7 days).

b) Sterility test

All plates of nutrient agar, cooked meat broth, thioglycolate broth, nutrient broth and sabouraud agar media which were inoculated with different prepared vaccines were found free from any bacterial, mycoplasma, or fungal contamination.

3.2. Determination of immune response of different prepared vaccines in sheep by ELISA test

3.2.1. The immune response against C. chauvoei and C. septicum in vaccinated sheep

The results of ELISA test for measuring the antibodies titer of C. chauvoei and C. septicum in sheep vaccinated with different vaccines showed that both vaccines elicited antibody titer (3.75 and 3.05 for C. chauvoei and 3 and 2.9 for C. septicum) at day 14 post vaccination as shown in table 1. The titers subsequently become higher to reach its peak (49.7 and 44.5 for C. chauvoei and 5 and 4.4 for C. septicum) at day 90 post vaccination. Finally, the titer gradually decline to reach to low titer at day 180 post vaccination.

Moreover, the comparison of antibody titer in both group of vaccines in case of C. chauvoei and C. septicum by t-test revealed
Comparative evaluation of antibody response in sheep

that there is no significant difference during the entire period of the study as shown in table 1.

3.2.2. The immune response against P. multocida type A and D and M. haemolytica type D in vaccinated sheep

The antibody titers against P. multocida type A and D and M. haemolytica type A in vaccinated sheep with both type of vaccines were measured by ELISA. The result revealed that the antibody titers were high at period from day 30 to day 180 post vaccination with both vaccines and in P. multocida and M. haemolytica as shown in table 2. The analysis of obtained results by t-test revealed that there was no significant difference between antibody titers in both types' vaccines.

Table 1: ELISA titers of C. chauvoei and C. septicum in sera of sheep vaccinated with bivalent Clostridial and combined vaccines.

<table>
<thead>
<tr>
<th>Day post 2nd dose of vaccination</th>
<th>C. Chauvoei</th>
<th>C. septicum</th>
<th>C. septicum alpha antitoxin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bivalent Clostridial vaccine</td>
<td>combined vaccine</td>
<td>bivalent Clostridial vaccine</td>
</tr>
<tr>
<td>Zero day</td>
<td>0.038±0.216</td>
<td>0.0875±0.105</td>
<td>0.045±0.011</td>
</tr>
<tr>
<td>14 days</td>
<td>3.75±1.15</td>
<td>3.05±0.75</td>
<td>3±0.4</td>
</tr>
<tr>
<td>30 days</td>
<td>9.60±0.4*</td>
<td>8.50±0.255*</td>
<td>3,6±1.2*</td>
</tr>
<tr>
<td>60 days</td>
<td>18.7±1.0</td>
<td>18.1±1.9*</td>
<td>3.8±1.45*</td>
</tr>
<tr>
<td>90 days</td>
<td>49.7±2.1*</td>
<td>44.5±0.5</td>
<td>5.0±0.4*</td>
</tr>
<tr>
<td>120 days</td>
<td>20.65±1.95*</td>
<td>19.755±1.245*</td>
<td>3.1±0.3*</td>
</tr>
<tr>
<td>150 days</td>
<td>11.5±0.8*</td>
<td>11.05±0.25*</td>
<td>2.7±0.1*</td>
</tr>
<tr>
<td>180 days</td>
<td>0.85±0.15*</td>
<td>1.1±0.1*</td>
<td>2.6±0.33*</td>
</tr>
<tr>
<td>210 days</td>
<td>0.343±0.02</td>
<td>0.350±0.15</td>
<td>0.4±0.1</td>
</tr>
<tr>
<td>240 days</td>
<td>0.125±0.1</td>
<td>0.109±0.5</td>
<td>0.22±0.2</td>
</tr>
</tbody>
</table>

*Non-significant difference between vaccinated groups (p>0.05).

Table 2: ELISA titer for P. multocida type A, D and M. hemolytica type A in sera of sheep vaccinated with Psteurella and combined vaccines.

<table>
<thead>
<tr>
<th>Day post 2nd dose of vaccination</th>
<th>P. multocida type A</th>
<th>P. multocida type D</th>
<th>M. haemolytica type A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pasteurella vaccine</td>
<td>combined vaccine</td>
<td>Pasteurella vaccine</td>
</tr>
<tr>
<td>Zero day</td>
<td>16.7±1.2</td>
<td>11.2±2.0</td>
<td>17.9±2.5</td>
</tr>
<tr>
<td>14 days</td>
<td>230±70</td>
<td>160±0.00</td>
<td>210±24</td>
</tr>
<tr>
<td>30 days</td>
<td>502±50*</td>
<td>490±30*</td>
<td>470±40*</td>
</tr>
<tr>
<td>60 days</td>
<td>2020±60*</td>
<td>1860±40</td>
<td>1930±60</td>
</tr>
<tr>
<td>90 days</td>
<td>2595±45*</td>
<td>2679±50*</td>
<td>2250±45*</td>
</tr>
<tr>
<td>120 days</td>
<td>2040±36*</td>
<td>2190±35*</td>
<td>3710±35*</td>
</tr>
<tr>
<td>150 days</td>
<td>1850±15*</td>
<td>1915±25*</td>
<td>2260±40.5*</td>
</tr>
<tr>
<td>180 days</td>
<td>1090±20*</td>
<td>1180±15*</td>
<td>1180±55*</td>
</tr>
<tr>
<td>210 days</td>
<td>910±60*</td>
<td>890±20.5*</td>
<td>930±39.5*</td>
</tr>
<tr>
<td>240 days</td>
<td>190±30*</td>
<td>190±10.5*</td>
<td>195±30*</td>
</tr>
</tbody>
</table>

*Non-significant difference between vaccinated groups (p>0.05).
4. DISCUSSION

The development of effective multi-component Clostridial vaccines and their widespread use by farmers resulted in a marked reduction in losses from Clostridial diseases in sheep of all ages (Hussein et al. 2000). With successful control of these diseases, Pasteurellosis remain one of the most significant causes of losses in sheep population.

The protection afforded by Clostridial and Pasteurella vaccines does not long-lasting immunity and these two vaccines are employed separately every year, a matter which consumes considerable time, effort and cost. Therefore, a suitable combined vaccine which can confer a dependable degree of immunity against both diseases is more convenient for sheep breeder, Veterinarians from economic point of view. Thus, the ideal method of control is vaccination. Inactivated bacterial whole-cell vaccines have been the most widely studied (Chandran et al. 2010).

In this study, three vaccines were prepared including Pasteurella vaccine (\(P. \text{multocida}\) types A and D and \(M. \text{haemolytica}\) type A), Clostridial vaccine (\(C. \text{chauvoei}\) and \(C. \text{septicum}\)) and combined vaccine (Clostridial and Pasteurella vaccines).

ELISA is suitable for measuring the immune response to different antigenic functions instead of serum neutralization test because it has two advantages. First, it will allow a significant reduction in the number of mice. Second, ELISA allow on open ended fully quantitative estimation of potency for vaccines (Makhareta and Hammam 2001). The calculation of ELISA titer by weighted parallel line model is preferable for evaluation of antibody level for ELISA data (Grabowska et al. 2002). Thus, the ELISA test was used as model test to evaluate the antibody titer against different bacteria in vaccinated sheep.

Regarding to the results of ELISA for measuring of antibody titer against \(C. \text{chauvoei}\) and \(C. \text{septicum}\) as shown in table (1), all sheep begin had antibody titer at day 14 post vaccination, the titer against both bacteria was reaching to its peak at day 90 post vaccination for both bivalent Clostridial vaccine and combined vaccine.

The results of the present study is comparable to that of Osman et al. (1997) who found that the presence of antibodies in cattle sera by plate agglutination test, indirect haemagglutination test, complement fixation test and ELISA gave the best results with no great difference between them. Furthermore, El-Helw et al. (2012) concluded that the potency for \(C. \text{chauvoei}\) and \(C. \text{septicum}\) vaccine can be done by ELISA and replaced the traditional methods for evaluations due to its precision, sensitivity, rapid and save animals used. The immunity conferred by combined vaccine of blackleg and haemorrhagic septicaemia was similar to that obtained by each vaccine alone (Ghanem 1987).

Regarding to ELISA titers to \(P. \text{multocida}\) type A and D and \(M. \text{haemolytica}\) type A in the sera of sheep vaccinated with Pasteurella and combined vaccine in table (2), all sheep had antibody titer at day 14 post vaccination. The antibody titer was reaching to its peak at day 120 post vaccination for both Pasteurella and combined vaccine.

These results agreed with these of Wells et al. (1984) who found that the requirement of multivalent vaccine including the common serotypes of \(P. \text{multocida}\) in the field was providing protection against infection with \(P. \text{multocida}\) serotypes included in the vaccine. Otomaru et al. (2012) found that the antibodies titers against \(P. \text{multocida}, M. \text{haemolytica}\) and \(\text{Histophilus somni}\) were significantly increased 4 weeks post vaccination.

Conclusion: The experimental combined vaccine was reliable for protection against
Comparative evaluation of antibody response in sheep

blackleg, gas gangrene and pneumonic Pasteurullosis caused by C. chauvoei, C. septicum, P. multocida types A, D and M. haemolytica type A. Additionally, ELISA test can be used as an alternative method for evaluation of different prepared vaccines.

5. REFERENCES

immunosorbent assay for measuring the immunizing potential of clostridium chauvoei antigens in multivalent clostridial vaccines. 6th cong. Egypt. Soc. For cattle diseases, November 4-6, 2001.

تحضير وتقييم لقاح الكلوستريديا والباستريلا المركب في الأغنام.

طارق نسيم حنا 1، عبد الفتاح منجد سليم 2، محمد حسين عبد 2، فصل خليل حموه 2، علاء عبدالله الفتاح المنسي 1، سوزان فخرى جوري 1

1 معهد بحوث الأقتصادية والتكنولوجيا، جمهورية مصر العربية
2 قسم الأمراض المعدية، كلية الطب البيطرية، جامعة القاهرة

الملخص العربي

إن انتاج اللقاحات المركبة هي اتجاه العلماء لما لها من فائدة اقتصادية كبيرة ولذلك تم في هذا البحث انتاج لقاح مركب من الكلوستريديا والباستريلا ودراسة رد الفعل المناعي في الأغنام باستخدام اختبار الإلزاما لقياس الإجابة المناعية ضد ميكروب الكلوستريديا وشوفيا ووضعت النتائج أن أعلى مستوي للإجابة المناعية يصل عند اليوم 90 بعد التحكم علاوة عليه أنه لا يوجد فروق جوهري في الإجابة المناعية الناتجة عن تحصينات الإغاث باللقاح المركب للكلوستريديا والباستريلا معاً، وتم أيضاً قياس الأجسام المناعية ضد ميكروب الباستريلا مالتوسيدا نوع (أ) والباستريلا، وحّل فروق جوهري بين النوعين (أ) (ب) لقاحات الإلزاما. ولم تظهر الإجابة المناعية مستوية عند التحكم وخلال اليوم 30 حتى اليوم 180 من حقن التحكم. بالإضافة إلى أنه لا يوجد فروق جوهري في معدل الأجسام المناعية الناتجة عن تحصين الإغاث بلقاح الباستريلا منفرداً أو اللقاح المركب للباستريلا والكلوستريديا معاً.

(مجلة بنها للعلوم الطبية البيطرية: عدد 27(2):209-316، ديسمبر 2014)